Code No: R20A1206

MALLA REDDY COLLEGE OF ENGINEERING & TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)

III B.Tech I Semester Supplementary Examinations, June 2025 Data Warehousing and Data Mining

(CSE-IOT & B.Tech-AIML)

	Roll No					
<u>_</u>						

Time: 3 hours Max. Marks: 70

Note: This question paper Consists of 5 Sections. Answer **FIVE** Questions, Choosing ONE Question from each SECTION and each Question carries 14 marks.

		SECTION-I	BCLL	CO(s)	Marks
1	\boldsymbol{A}	Define Data warehouse. List the characteristics of data warehouse.	L1	CO-I	[4M]
	В	Explain about Data ware house architecture and its components.	L2	CO-I	[10M]
		OR			
2	\boldsymbol{A}	Explain various OLAP operations used in Data warehousing.	L2	CO-I	[10M]
	\boldsymbol{B}	List characteristics of Dimension table.	L1	CO-I	[4M]
		SECTION-II			. ,
3	\boldsymbol{A}	Summarize data mining functionalities.	L2	CO-II	[7M]
	В	Explain data mining task primitives.	L4	CO-II	[7M]
		OR			. ,
4	\boldsymbol{A}	What is data cleaning? Outline the advantages of Data cleaning.	L2	CO-II	[7M]
	\boldsymbol{B}	(i)Categorize the major approaches for data integration.	L4	CO-II	[7M]
		(ii) What are the issues to consider during data integration.	L2		. ,
		SECTION-III			
5	\boldsymbol{A}	Consider the following dataset to analyse and find frequent item sets.	L5	CO-III	[10M]

TID	items
T1	11, 12 , 15
T2	12,14
Т3	12,13
T4	11,12,14
T5	11,13
Т6	12,13
T7	11,13
T8	11,12,13,15
T9	11,12,13

Explain the step-by-step process to find frequent itemssets and generate association rules using the Apriori algorithm: Minimum support=2, Minimum Confidence=60%

	$\boldsymbol{\mathit{B}}$	Define Support and confidence.	L1	CO-III	[4M]
		OR			
6	\boldsymbol{A}	Illustrate FP Growth algorithm with an example.	L2	CO-III	[10M]
	$\boldsymbol{\mathit{B}}$	Outline the disadvantages of Apriori algorithm.	L2	CO-III	[4M]
		SECTION-IV			
7	\boldsymbol{A}	Explain decision tree with suitable example.	L2	CO-IV	[7M]
	$\boldsymbol{\mathit{B}}$	Explain Bayesian Belief networks algorithm with an example.	L4	CO-IV	[7M]
		OR			
8	\boldsymbol{A}	Explain working of KNN algorithm in detail.	L4	CO-IV	[10M]
	$\boldsymbol{\mathit{B}}$	List the disadvantages of KNN algorithm.	L1	CO-IV	[4M]
		SECTION-V			
9	\boldsymbol{A}	Apply $K(=2)$ -Means algorithm over the data (185, 72), (170,	L3	CO-V	[10M]
		56), (168, 60), (179,68), (182,72), (188,77) up to two iterations			
		and show the clusters. Initially choose first two objects as			
		initial centroids.			
	$\boldsymbol{\mathit{B}}$	Outline the applications of cluster analysis.	L2	CO-V	[4M]
		OR			
10	\boldsymbol{A}	List out the key Issues in Hierarchical Clustering.	L1	CO-V	[4M]
	$\boldsymbol{\mathit{B}}$	Explain the process of Agglomerative clustering in detail.	L4	CO-V	[10M]
